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Diffusion effects in a nonlinear electrical lattice
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We consider a nonlinear electrical network modeling the generalized Nagumo equation. Focusing on the
particular case where the initial load of the lattice consists in the superimposition of a coherent information
weakly varying in space and a perturbation of small amplitude, we show that the perturbation can be eliminated
quickly, almost without disturbing the information.
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Electrical transmission lines are very convenient tools
studying quantitatively the fascinating properties of nonl
ear waves@1,2#. Indeed, they provide a useful way to che
directly how the nonlinear excitations behave inside the m
dium, by means of probes related to an oscilloscope.
propagation of Korteweg–de Vries~KdV! solitons @3#, of
nonlinear Schro¨dinger ~NLS! modulated waves@4#, or the
influence of discreteness on the modulational instability@5#
are some recent examples of experimental studies devot
nonlinear phenomena, using electrical lattices.

On the other hand, systems modeled by nonlin
reaction-diffusion equations have been widely investiga
because of their importance in various fields like chemis
biology, or ecology @6#. Since the pioneering study o
Hodgkin and Huxley 45 years ago@7#, a special interest ha
been devoted to the understanding of the transmission
information along nerve fibers@8#. In particular, Nagumo@9#
has realized an experimental electrical lattice using tun
diodes for simulating the propagation of pulses in ne
axon. The effects of discreteness, which may radica
change the propagation or diffusion characteristics with
gards to the case of a continuous system, have also
discussed@10,11# to explain the so-called propagation failu
in the Nagumo equation.

Reaction-diffusion phenomena can also be applied in
field of signal processing. Indeed, Chua introduced cellu
neural networks~CNN! @12#, which represent, under certa
conditions@13#, an excellent approximation to the nonline
partial differential equations describing reaction-diffusi
systems, such as Fisher’s equation, FitzHugh-Nagumo e
tion, or the generalized Nagumo equation. These CNNs
inspired by the biological neural networks and are capabl
high-speed parallel signal or image processing@14#.

In this paper, we present a one-dimensional reacti
diffusion electrical lattice~1D CNN! modeling the general
ized Nagumo equation and allowing noise removal. In
particular case where the initial load of the lattice consists
the superimposition of a coherent information weakly va
ing in space and a perturbation of small amplitude, we sh
that the perturbation can be eliminated quickly, almost wi
out disturbing the information.
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We consider a nonlinear diffusive electrical lattice ma
of N identical cells, as illustrated in Fig. 1. Each cell contai
a series linear resistorR1 and a linear capacitorC in parallel
with a nonlinear resistorRNL . From Kirchhoff laws, we de-
rive the system of nonlinear discrete equations for 2<n
<N21:

dVn

dt
5

1

R1C
~Vn111Vn2122Vn!2

g~Vn!

C
, ~1!

whereVn and g(Vn)5I NL,n are respectively the voltage a
cell n and the corresponding nonlinear current in the resis
RNL . The description of the system is completed by assu
ing zero-flux or Neumann boundary conditions, forn51 and
n5N, respectively,

dV1

dt
5

1

R1C
~V22V1!2

g~V1!

C
, ~2a!

dVN

dt
5

1

R1C
~VN212VN!2

g~VN!

C
. ~2b!

Equation~1! is the discrete version of a diffusion equatio
introduced by Nagumo@9# for simulating information propa-
gation in nerve axon

]v
]t

5
]2v
]x2 1 f ~v !, ~3!

FIG. 1. Schematic representation of the nonlinear diffusive e
trical network. The lattice is composed ofN5256 identical cells
with a linear resistanceR1 and a nonlinear resistanceRNL connected
in parallel with a linear capacitorC.
6075 © 1998 The American Physical Society
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in which f (v) is a cubic polynomial. Here, the curren
voltage characteristicsI NL,n5g(Vn), similar to that of a
Gunn diode, can be expressed by the following cubic fu
tion:

I NL,n5g~Vn!5
Vn

R0
S 12

Vn

Va
D S 12

Vn

Vb
D . ~4!

In this expression,Va andVb are constant voltages and obe
2Va<Vb , while R0 is the value of the nonlinear resistorRNL
in the linear regime, e.g., forVn!Va,Vb . Furthermore,
when a uniform excitation is applied in the lattice@Vn11
1Vn2122Vn50 in Eq. ~1!#, it is known that@6#, the two
steady states 0 andVb are stable, while steady stateVa is
unstable. Finally, in the following, we restrict our study
the case whereVnP@0,Vb#.

We focus now on the more interesting case where
network is initially loaded with a nonuniform signal consis
ing of the superimposition of a coherent voltage~the ‘‘infor-
mation’’!, and a perturbation, e.g., white noise, of small a
plitude. The coherent part of the signal is supposed to v
slowly in time and space compared to the perturbati
Therefore, it will be treated as a continuous signal and
introduce the slow variablesX5«Aan and t5«at, where«
is a small parameter anda→0. Then, the resulting voltage a
cell n can be expressed by

Vn~ t !5U~X,t!1«bbn~ t !, ~5!

where U(X,t) represents the coherent part of the sign
while «bbn(t) is the perturbation. Note that coefficientb is
assumed to be greater thana in order to express that th
amplitude of the perturbation is small compared to the a
plitude of the coherent signal. Using the reductive pertur
tion method@15#, we insert expression~5! in ~1!, and, col-
lecting terms of order lower than«b, we find that the voltage
U obeys the continuous Nagumo equation

]U

]t
5

1

t1

]2U

]X22
1

t2
US 12

U

Va
D S 12

U

Vb
D , ~6!

wheret151/R1C and t251/R0C. As the voltageU is as-
sumed to be slowly varying in space, we can ignore, in
~6!, the space gradient term with respect to the nonlin
term. Then, in the case whereVa5Vb/2, which maintains the
symmetry of the device, we obtain analytically the evoluti
of U versus time:

U~ t !5
Vb

2 F11
~U02Vb/2!

A~U02Vb/2!21U0~Vb2U0!e2t/t2
G ,

~7!

whereU0 is the initial condition. As a result, two cases
evolution are possible, depending on the value ofU0 : ~i!
When 0<U0,Vb/2, the voltage in the lattice tends un
formly to the stable state 0;~ii ! when Vb/2,U0<Vb , the
voltage in the lattice tends uniformly to the stable stateVb .
Notice that the special case whereU05Vb/2, which corre-
sponds to an unstable state, is not considered.
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Next, collecting terms of order«b in Eq. ~1!, we obtain
the linear discrete equation that governs the evolution o
perturbation of small amplitude in the lattice

dbn

dt
5

1

t1
@bn111bn2122bn#

2
1

t2
bnF122US 1

Va
1

1

Vb
D1

3U2

VaVb
G . ~8!

As we knowU at any time through Eq.~7!, we can deter-
mine the evolution of the noisebn(t), that is, ifbn8(0) is the
initial small amplitude of the noise located at celln8:

bn~ t !5S Vb

2 D 3

(
n8

bn8~0!I n82n~2t/t1!e~1/2t222/t1!t

@~U02Vb/2!2et/t21U0~Vb2U0!#3/2,

~9!

where I n82n(t) is the modified Bessel function of ordern8
2n. Equations~7! and ~9! show that the time scales for th
evolutions of both noise and coherent signal depend on
components of the elementary cell~see Fig. 1! by way of t1
and t2 . For example, they can be chosen in order to sp
up the noise diffusion without significantly disturbing th
coherent partU of the signal.

In order to check the validity of our analytical approac
we have performed theoretical calculations and numer
simulations. The parameters of the nonlinear current-volt
characteristics have been chosen to beVb51 V and Va
5Vb/250.5 V.

Following our hypotheses for the analytical approach,
consider, for initial conditions, a single noisy impulsion
small amplitude located on celln5N/2, that is bn(t50)
50.2dn,N/2 V ~d i , j being the Kronecker symbol!, superim-
posed onto a uniform signal of amplitudeU050.55 V
(Vb/2,U0,Vb).

FIG. 2. Theoretical evolution of the noise vs time ford
5t2 /t1510 andd50.5 ~dashed lines!. The theoretical evolution
of the information signal~continuous line! remains identical for the
two casesd510 andd50.5. Results obtained by numerical sim
lations are represented by3 signs.
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First, using Eqs.~7! and ~9! for t150.1ms and t2
51 ms, that is with a discretization parameter@11# d
5t2 /t1510, we obtain the time evolutions ofU(t) and
bn(t) represented in Fig. 2 by the solid and the dashed lin
respectively. In this case, the system behaves almost li
continuous one, and the noise tends quickly to zero while
information U evolves slowly and tends to stable stateVb
51 V. On the other hand, ift152 ms andt251 ms, that is,
d50.5, the noise evolution~upper dashed line in Fig. 2! in
this rather discrete system is similar to the behavior of
information signalU, which remains identical to that of th
previous case~continuous line!. The caset150.1ms and
t251 ms, that is,d510, seems then favorable for elimina
ing noise without perturbing too much the coherent part
the signal.

Next, numerical simulations of Eq.~1! have been per-
formed on a lattice ofN5256 cells, with Neumann boundar
conditions and choosing both the favorable cased510 and
the cased50.5. Furthermore, att50, the network is loaded
with the initial condition depicted above and represented
the continuous line in Figs. 3~a! and 3~b!, while the signal in
the lattice is represented at timest52 ms andt54 ms by the
dashed lines. As time evolves and according to Eqs.~7! and
~9!, for d510 @see Fig. 3~a!# the single noise impulsion de
creases quickly, while the coherent signal is slowly attrac
by the nearest stable state, hereU5Vb51 V. On the con-
trary, for d50.5, as presented in Fig. 3~b!, the perturbation
and the information follow the same evolution: no filtering
the noise occurs.

FIG. 3. Evolution of the uniform signal with a localized pertu
bation ford510 ~a! andd50.5 ~b!. Signals are represented for bo
cases att50 s ~continuous line!, t52 ms ~dashed line!, and t
54 ms ~dashed line above!.
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At this stage, it is necessary to compare quantitatively
results, given by the numerical simulations, to the theoret
predictions. During the simulations, the amplitudes of,
spectively, the uniform signal and the perturbation, ha
been measured for five different values of time~t50.1ms,
0.25 ms, 0.5 ms, 1 ms, and 1.25ms! and for both casesd
510 andd50.5. For a direct comparison with the theoretic
predictions, these amplitudes have been plotted in Fig. 2~3
signs!, superimposed to the curves giving the predicted e
lutions of U(t) and bn(t). The agreement between ou
model and the simulations is quite satisfactory for the e
lutions of both the coherent signalU(t) on one hand, and the
perturbationbn(t) on the other hand, even if there exists f
bn(t) a slight discrepancy in the cased50.5.

Finally, we present, in Fig. 4, the processing of a mo
interesting signal, that is, a noisy periodic signal, in the
vorable cased510. This signal consists in a sinusoid o
amplitudeU50.3 V superimposed onto a white noise of am
plitude 0.1 V@Fig. 4~a!#. As expected, the perturbation pa
of the whole signal disappears very quickly as shown in F
4~b! for t50.3ms.

Our system, based on a nonlinear lattice modeling
Nagumo equation, could be useful for realizing an ana
signal processing array allowing the improvement of t
signal-to-noise ratio. An experimental electrical lattice is c
rently under investigation in order to check this theoreti
study. Furthermore, it will allow us to observe on a re
system the properties of the Nagumo equation~front propa-
gation, discreteness effects, etc.!.

FIG. 4. Processing of a noisy periodic signal withd510: ~a!
initial condition att50 s; ~b! resulting signal att50,3ms.
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