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Diffusion effects in a nonlinear electrical lattice
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We consider a nonlinear electrical network modeling the generalized Nagumo equation. Focusing on the
particular case where the initial load of the lattice consists in the superimposition of a coherent information
weakly varying in space and a perturbation of small amplitude, we show that the perturbation can be eliminated
quickly, almost without disturbing the information.

[S1063-651%98)01505-0

PACS numbe(s): 03.40.Kf, 87.10+e

Electrical transmission lines are very convenient tools for We consider a nonlinear diffusive electrical lattice made
studying quantitatively the fascinating properties of nonlin-of N identical cells, as illustrated in Fig. 1. Each cell contains
ear waveg1,2]. Indeed, they provide a useful way to check a series linear resistét; and a linear capacitdZ in parallel
directly how the nonlinear excitations behave inside the mewith a nonlinear resistoRy, . From Kirchhoff laws, we de-
dium, by means of probes related to an oscilloscope. Théve the system of nonlinear discrete equations ferr2
propagation of Korteweg—de Vrie&KdV) solitons[3], of <N-1:
nonlinear Schidinger (NLS) modulated wave$4], or the
influence of discreteness on the modulational instabjibty dv 1 g(V,)
are some recent examples of experimental studies devoted to — = (Va1 + Vo1 =2V, — ——,
nonlinear phenomena, using electrical lattices. dt = R,C c

On the other hand, systems modeled by nonlinear
reaction-diffusion equations have been widely investigatedvhereV, and g(Vn)=InLn are respectively the voltage at
because of their importance in various fields like chemistrycell n and the corresponding nonlinear current in the resistor
biology, or ecology[6]. Since the pioneering study of R, . The description of the system is completed by assum-
Hodgkin and Huxley 45 years ad@], a special interest has ing zero-flux or Neumann boundary conditions, et 1 and
been devoted to the understanding of the transmission gf=N, respectively,
information along nerve fibef8]. In particular, Nagum¢@9]
has realized an experimental electrical lattice using tunnel

@

diodes for simulating the propagation of pulses in nerve %: 1 (Vo—Vq)— 9(Va) (2a)
axon. The effects of discreteness, which may radically dt R,C c

change the propagation or diffusion characteristics with re-

gards to the case of a continuous system, have also been dqv 1 (V)
discussed10,11] to explain the so-called propagation failure N~ vy 9N

: ! (Vn-1—VN) - (2b)
in the Nagumo equation. dt R,C c

Reaction-diffusion phenomena can also be applied in the

field of signal processing. Indeed, Chua introduced cellular Equation(1) is the discrete version of a diffusion equation

neural network§CNN) [12], which represent, under certain jnoduced by Nagumg] for simulating information propa-

con(_j|t|on_s[13], an excellgnt approximation to th_e noplmgar gation in nerve axon

partial differential equations describing reaction-diffusion

systems, such as Fisher’'s equation, FitzHugh-Nagumo equa-

tion, or the generalized Nagumo equation. These CNNs are v Fv

inspired by the biological neural networks and are capable of gt ox? 1), ©

high-speed parallel signal or image procesgib4j.

In this paper, we present a one-dimensional reaction- . R,

diffusion electrical lattice1D CNN) modeling the general-  _._ 2 —— 2

ized Nagumo equation and allowing noise removal. In the

particular case where the initial load of the lattice consists in

the superimposition of a coherent information weakly vary-

ing in space and a perturbation of small amplitude, we show

that the perturbation can be eliminated quickly, almost with- ---

out disturbing the information. FIG. 1. Schematic representation of the nonlinear diffusive elec-
trical network. The lattice is composed bf=256 identical cells
with a linear resistancR; and a nonlinear resistan&g, connected

*Electronic address: marquie@u-bourgogne.fr in parallel with a linear capacitdC.

Vit C Rn |V, C Ry
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in which f(v) is a cubic polynomial. Here, the current- 1
voltage characteristic$y, ,=9g(V,), similar to that of a ool
Gunn diode, can be expressed by the following cubic func-
tion: 0.8f
v, v, v, 0.7
INL,n_g(Vn)_R_O _V_a) A (4) > 0.6W
E 0.5} 1
In this expressiony, andV, are constant voltages and obey :E
2V,<V,, while Ry is the value of the nonlinear resistag, g 041
in the linear regime, e.g., foW,<V,<V,. Furthermore, < o3}
when a uniform excitation is applied in the latti¢¥,,, ;
+V,_1—2V,=0 in Eq.(1)], it is known that[6], the two O e e e d=05_ ]
steady states 0 and,, are stable, while steady statg, is 0.1f X x
unstable. Finally, in the following, we restrict our study to M e e e e da=10
the case wher®,e[0,V,]. % 05 1 15 2
We focus now on the more interesting case where the Time ( s)
network is initially loaded with a nonuniform signal consist-
ing of the superimposition of a coherent voltagee “infor- FIG. 2. Theoretical evolution of the noise vs time fdr

mation”), and a perturbation, e.g., white noise, of small am-=7,/7,=10 andd=0.5 (dashed lines The theoretical evolution
plitude. The coherent part of the signal is supposed to var?f the information signafcontinuous ling remains identical for the
slowly in time and space compared to the perturbationtWo cased=10 andd=0.5. Results obtained by numerical simu-
Therefore, it will be treated as a continuous signal and weations are represented by signs.

introduce the slow variableX=¢n and r=¢°t, wheree

is a small parameter and—0. Then, the resulting voltage at  Next, collecting terms of ordes” in Eq. (1), we obtain
cell n can be expressed by the linear discrete equation that governs the evolution of a

perturbation of small amplitude in the lattice

V(1) =U(X,7)+&Pb(t), 5
n()=U(X,7)+e"by(1) ©) dbn_l[b o .
where U(X,7) represents the coherent part of the signal, dt 7 -t Tt A
while Pb,(t) is the perturbation. Note that coefficietis 1 1 302
assumed to be greater thanin order to express that the -~ b l1-2U| —+ — |+ . 8
. A n ()
amplitude of the perturbation is small compared to the am- T2 Va  Vp/ VaVp

plitude of the coherent signal. Using the reductive perturba- )
tion method[15], we insert expressiofb) in (1), and, col- As we knowU at any time through Eq(7), we can deter-
lecting terms of order lower thasf®, we find that the voltage Mine the evolution of the noide,(t), that s, ifb,/(0) is the

U obeys the continuous Nagumo equation initial small amplitude of the noise located at cell:
V_1 1 ol | P o[ Vo] 's DOy (2t e
o m Xl l_V_a)<l_v_b : © n 2] < [(Up—Vy/2)2e72+ Ug(V,— Ug) 7%
©)

where 7;=1/R,C and 7,=1/R,C. As the voltageU is as- ) - ]
(6), the space gradient term with respect to the nonlinear - Equations(7) and(9) show that the time scales for the
term. Then, in the case whevg =V, /2, which maintains the ~€volutions of both noise and coherent signal depend on the

symmetry of the device, we obtain analytically the evolutioncomponents of the elementary cedee Fig. 1 by way of 7,
of U versus time: and . For example, they can be chosen in order to speed

up the noise diffusion without significantly disturbing the
(Ug=V,/2) coherent part) of the signal_. _ _
+ o b In order to check the validity of our analytical approach,
V(U= V/2)2+ Uy(V,—Ug)e V™ ’ we have performed theoretical calculations and numerical
(7) simulations. The parameters of the nonlinear current-voltage
characteristics have been chosen to We=1V and V,
whereU, is the initial condition. As a result, two cases of =V,/2=0.5V.
evolution are possible, depending on the valueUgf (i) Following our hypotheses for the analytical approach, we
When 0<sUy<V,/2, the voltage in the lattice tends uni- consider, for initial conditions, a single noisy impulsion of
formly to the stable state Qji) whenV,/2<U,<V,, the small amplitude located on celi=N/2, that isb,(t=0)
voltage in the lattice tends uniformly to the stable stdge =0.25, N2 V (8 being the Kronecker symbplsuperim-
Notice that the special case whddg=V,/2, which corre- posed onto a uniform signal of amplitudd,=0.55V
sponds to an unstable state, is not considered. (Vp/2<Up<Vy).

Vp
U= |1
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FIG. 3. Evolution of the uniform signal with a localized pertur-

bation ford=10 (a) andd=0.5(b). Signals are represented for both FIG. 4. Processing of a noisy periodic signal wik- 10: (a)
cases att=0s (continuous ling t=2 us (dashed ling and t initial condition att=0s; (b) resulting signal at=0,3 us.
=4 us (dashed line aboye

At this stage, it is necessary to compare quantitatively the
B ; i ) o results, given by the numerical simulations, to the theoretical
=1lps, that is with a discretization parametgtl] d predictions. During the simulations, the amplitudes of, re-

=71,/7y=10, we obtain the time evolutions di(t) and : ’ : ;
b,(t) represented in Fig. 2 by the solid and the dashed line spectively, the uniform signal and the perturbation, have
4 jeen measured for five different values of tiftte=0.1 us,

respectively. In this case, the system behaves almost like
continuous one, and the noise tends quickly to zero while th8-25 #S, 0.5us, 1 us, and 1.25us) and for both cased
information U evolves slowly and tends to stable statg =10_ar_1dd=0.5. For ad!rect comparison with the t_heo_retlcal
=1V. On the other hand, if;=2 us andr,=1 us, that is, p_redlctlons, Fhese amplitudes have b_e_en plotted in Figs 2
d=0.5, the noise evolutiofupper dashed line in Fig.)an sign9, superimposed to the curves giving the predicted evo-
this rather discrete system is similar to the behavior of thdutions of U(t) and by(t). The agreement between our
information signall, which remains identical to that of the model and the simulations is quite satisfactory for the evo-
previous casgcontinuous ling The caser;=0.1us and lutions of both the coherent signdl(t) on one hand, and the
7,=1 us, that is,d=10, seems then favorable for eliminat- perturbatiorb,(t) on the other hand, even if there exists for
ing noise without perturbing too much the coherent part ob,(t) a slight discrepancy in the case=0.5.
the signal. Finally, we present, in Fig. 4, the processing of a more
Next, numerical simulations of Eql) have been per- interesting signal, that is, a noisy periodic signal, in the fa-
formed on a lattice oN =256 cells, with Neumann boundary vorable cased=10. This signal consists in a sinusoid of
conditions and choosing both the favorable cdsel0 and amplitudeU=0.3 V superimposed onto a white noise of am-
the cased=0.5. Furthermore, dt=0, the network is loaded plitude 0.1 V[Fig. 4(@)]. As expected, the perturbation part
with the initial condition depicted above and represented byof the whole signal disappears very quickly as shown in Fig.
the continuous line in Figs.(8) and 3b), while the signal in  4(b) for t=0.3 us.
the lattice is represented at times2 us andt=4 us by the Our system, based on a nonlinear lattice modeling the
dashed lines. As time evolves and according to Efjsand  Nagumo equation, could be useful for realizing an analog
(9), for d=10[see Fig. 83)] the single noise impulsion de- signal processing array allowing the improvement of the
creases quickly, while the coherent signal is slowly attractedignal-to-noise ratio. An experimental electrical lattice is cur-
by the nearest stable state, héte=V,=1V. On the con- rently under investigation in order to check this theoretical
trary, for d=0.5, as presented in Fig(l8, the perturbation study. Furthermore, it will allow us to observe on a real
and the information follow the same evolution: no filtering of system the properties of the Nagumo equatimont propa-
the noise occurs. gation, discreteness effects, etc.

First, using Egs.(7) and (9) for ;=0.1us and 7,
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